DataSheet.es    


PDF MCP1701 Data sheet ( Hoja de datos )

Número de pieza MCP1701
Descripción 2 uA Low Dropout Positive Voltage Regulator
Fabricantes Microchip Technology 
Logotipo Microchip Technology Logotipo



Hay una vista previa y un enlace de descarga de MCP1701 (archivo pdf) en la parte inferior de esta página.


Total 20 Páginas

No Preview Available ! MCP1701 Hoja de datos, Descripción, Manual

M
MCP1701
2 µA Low Dropout Positive Voltage Regulator
Features
• 2.0 µA Typical Quiescent Current
• Input Operating Voltage Range up to 10.0V
• Low Dropout Voltage:
- 250 mV (typ.) @ 100 mA
- 500 mV (typ.) @ 200 mA
• High Output Current: 250 mA (VOUT = 5.0V)
• High-Accuracy Output Voltage: ±2% (max)
• Low Temperature Drift: ±100 ppm/°C (typ.)
• Excellent Line Regulation: 0.2%/V (typ.)
• Package Options: 3-Pin SOT-23A, 3-Pin SOT-89
and 3-Pin TO-92
• Short-Circuit Protection
• Standard Output Voltage Options:
- 1.8V, 2.5V, 3.0V, 3.3V, 5.0V
Applications
• Battery-Powered Devices
• Battery-Powered Alarm Circuits
• Smoke Detectors
• CO2 Detectors
• Smart Battery Packs
• PDAs
• Low Quiescent Current Voltage Reference
• Cameras and Portable Video Equipment
• Pagers and Cellular Phones
• Solar-Powered Instruments
• Consumer Products
• Microcontroller Power
Related Literature
• AN765, “Using Microchip’s Micropower LDOs”,
DS00765, Microchip Technology Inc., 2002
• AN766, “Pin-Compatible CMOS Upgrades to
Bipolar LDOs”, DS00766,
Microchip Technology Inc., 2002
General Description
The MCP1701 is a family of CMOS low dropout (LDO),
positive voltage regulators that can deliver up to
250 mA of current while consuming only 2.0 µA of
quiescent current (typical). The input operating range is
specified up to 10V, making it ideal for lithium-ion (one
or two cells), 9V alkaline and other two and three
primary cell battery-powered applications.
The MCP1701 is capable of delivering 250 mA with an
input-to-output voltage differential (dropout voltage) of
650 mV. The low dropout voltage extends the battery
operating lifetime. It also permits high currents in small
packages when operated with minimum VIN – VOUT
differentials.
The MCP1701 has a tight tolerance output voltage
regulation of ±0.5% (typical) and very good line regula-
tion at ±0.2%. The LDO output is stable when using
only 1 µF of output capacitance of either tantalum or
aluminum-electrolytic style capacitors. The MCP1701
LDO also incorporates short-circuit protection to
ensure maximum reliability.
Package options include the 3-Pin SOT-23A, 3-Pin
SOT-89 and 3-Pin TO-92.
Package Types
3-Pin SOT-23A
VIN
3
3-Pin SOT-89
VIN
MCP1701
MCP1701
1
GND
2
VOUT
1 23
GND VIN VOUT
3-Pin TO-92
1 23
Note:
Bottom
View
GND VIN VOUT
The 3-Pin SOT-23A is equivalent to
the EIAJ SC-59.
2004 Microchip Technology Inc.
DS21874A-page 1

1 page




MCP1701 pdf
MCP1701
2.0 TYPICAL PERFORMANCE CURVES
Note:
The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Notes: Unless otherwise specified, VOUT = 1.8V, 3.0V, 5.0V, TA = +25°C, CIN = 1 µF Tantalum, COUT = 1 µF Tantalum.
2.65
2.60
2.55
2.50
2.45
2.40
2.35
2.30
2.25
2.20
2.15
2.10
2.05
2.00
1.95
2
+25°C
0°C
-40°C
VR = 1.8V
3 4 5 6 7 8 9 10
Input Voltage (V)
FIGURE 2-1:
Supply Current vs. Input
Voltage (VR = 1.8V).
2.10
2.05
2.00
1.95
1.90
1.85
1.80
1.75
1.70
1.65
1.60
1.55
1.50
1.45
1.40
1.35
1.30
1.25
1.20
0
+25°C
+85°C
0°C
-40°C
VIN = 4.0V
VR = 3.0V
20 40 60 80 100 120 140 160
Load Current (mA)
FIGURE 2-4:
Supply Current vs. Load
Current (VR = 3.0V).
2.4
2.3
2.2
2.1
2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
3
+25°C
+85°C
-40°C
VR = 3.0V
4 5 6 7 8 9 10
Input Voltage (V)
FIGURE 2-2:
Supply Current vs. Input
Voltage (VR = 3.0V).
2.75
2.70
2.65
2.60
2.55
2.50
2.45
2.40
2.35
2.30
2.25
2.20
2.15
2.10
2.05
2.00
0
+25°C
+85°C
0°C
-40°C
VIN = 6.0V
VR = 5.0V
20 40 60 80 100 120 140 160 180 200
Load Current (mA)
FIGURE 2-5:
Supply Current vs. Load
Current (VR = 5.0V).
3.00
2.85
VR = 5.0V
2.70
2.55 +25°C
2.40
+85°C
2.25
2.10
1.95
1.80
1.65
1.50
5
6
-40°C
78
Input Voltage (V)
9
10
FIGURE 2-3:
Supply Current vs. Input
Voltage (VR = 5.0V).
2.9
2.8
2.7
2.6
2.5
2.4
2.3
2.2
2.1
2.0
1.9
1.8
1.7
1.6
1.5
1.4
-40
-20
FIGURE 2-6:
Temperature.
VR = 5.0V
VR = 1.8V
VR = 3.0V
VIN = VR + 1V
IOUT = 0 µA
0 20 40 60
Temperature (°C)
80 100
Supply Current vs.
2004 Microchip Technology Inc.
DS21874A-page 5

5 Page





MCP1701 arduino
5.0 THERMAL CONSIDERATIONS
5.1 Power Dissipation
The amount of power dissipated internal to the LDO
linear regulator is the sum of the power dissipation
within the linear pass device (P-channel MOSFET) and
the quiescent current required to bias the internal refer-
ence and error amplifier. The internal linear pass
device power dissipation is calculated as shown in
Equation 5-1.
EQUATION 5-1:
PD (Pass Device) = (VIN – VOUT) x IOUT
The internal power dissipation, which is due to the bias
current for the LDO internal reference and error ampli-
fier, is calculated as shown in Equation 5-2.
EQUATION 5-2:
PD (Bias) = VIN x IGND
The total internal power dissipation is the sum of PD
(Pass Device) and PD (Bias).
EQUATION 5-3:
PTOTAL = PD (Pass Device) + PD (Bias)
For the MCP1701, the internal quiescent bias current is
so low (2 µA, typical) that the PD (Bias) term of the
power dissipation equation can be ignored. The
maximum power dissipation can be estimated by using
the maximum input voltage and the minimum output
voltage to obtain a maximum voltage differential
between input and output. The next step would be to
multiply the maximum voltage differential by the
maximum output current.
EQUATION 5-4:
PD = (VINMAX – VOUTMIN) x IOUTMAX
Given:
VIN = 3.3V to 4.1V
VOUT = 3.0V ± 2%
IOUT = 1 mA to 100 mA
TAMAX = 55°C
PMAX = (4.1V – (3.0V x 0.98)) x 100 mA
PMAX = 116.0 milliwatts
MCP1701
To determine the junction temperature of the device, the
thermal resistance from junction-to-ambient must be
known. The 3-pin SOT-23 thermal resistance from
junction-to-air (RθJA) is estimated to be approximately
335°C/W. The SOT-89 RθJA is estimated to be
approximately 52°C/W when mounted on 1 square inch
of copper. For the TO-92, RθJA is estimated to be
131.9°C/W. The RθJA will vary with physical layout,
airflow and other application-specific conditions.
The device junction temperature is determined by
calculating the junction temperature rise above
ambient, then adding the rise to the ambient
temperature.
EQUATION 5-5:
JUNCTION
TEMPERATURE - SOT-23
EXAMPLE:
TJ = PDMAX × RθJA + TA
TJ = 116.0 milliwatts × 335°C/W + 55°C
TJ = 93.9°C
EQUATION 5-6:
JUNCTION
TEMPERATURE - SOT-89
EXAMPLE:
TJ = 116.0 milliwatts × 52°C/W + 55°C
TJ = 61°C
EQUATION 5-7:
JUNCTION
TEMPERATURE - TO-92
EXAMPLE:
TJ = 116.0 milliwatts × 131.9°C/W + 55°C
TJ = 70.3°C
2004 Microchip Technology Inc.
DS21874A-page 11

11 Page







PáginasTotal 20 Páginas
PDF Descargar[ Datasheet MCP1701.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
MCP1700Low Quiescent Current LDOMicrochip Technology
Microchip Technology
MCP17012 uA Low Dropout Positive Voltage RegulatorMicrochip Technology
Microchip Technology
MCP1701ALow-Dropout Positive Voltage RegulatorMicrochip Technology
Microchip Technology
MCP1702250mA Low Quiescent Current LDO RegulatorMicrochip Technology
Microchip Technology

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar