DataSheet.es    


PDF MIC2169 Data sheet ( Hoja de datos )

Número de pieza MIC2169
Descripción 500 KHZ PWM SYNCHRONOUS BUCK CONTROL IC
Fabricantes Micrel Semiconductor 
Logotipo Micrel Semiconductor Logotipo



Hay una vista previa y un enlace de descarga de MIC2169 (archivo pdf) en la parte inferior de esta página.


Total 15 Páginas

No Preview Available ! MIC2169 Hoja de datos, Descripción, Manual

MIC2169
Micrel
MIC2169
500kHz PWM Synchronous Buck Control IC
General Description
The MIC2169 is a high-efciency, simple to use 500kHz PWM
synchronous buck control IC housed in a small MSOP-10
package. The MIC2169 allows compact DC/DC solutions
with a minimal external component count and cost.
The MIC2169 operates using a 3V to 14.5V input, without
the need for any additional bias voltage. The output voltage
can be precisely regulated down to 0.8V. The adaptive all
N-Channel MOSFET drive scheme allows efciencies, over
95%, across a wide load range.
The MIC2169 senses current across the high-side N-Channel
MOSFET, eliminating the need for an expensive and lossy
current-sense resistor. Current limit accuracy is maintained
via a positive temperature coefcient that tracks the increas-
ing RDS(ON) of the external MOSFET. Additional cost and
space are saved by the internal in-rush-current limiting and
digital soft-start.
The MIC2169 is available in a 10-pin MSOP package, with a
wide junction operating range of –40°C to +125°C.
All support documentation can be found on Micrel’s web site
at: www.micrel.com.
Features
• 3V to 14.5V input voltage range
• Adjustable output voltage down to 0.8V
• Up to 95% efciency
• 500kHz PWM operation
• Adjustable current limit senses high-side N-Channel
MOSFET current
• No external current-sense resistor
• Adaptive gate drive increases efciency
• Fast transient response
– Externally compensated
• Overvoltage protection protects the load in fault
conditions
• Dual mode current limit speeds up recovery time
• Hiccup mode short-circuit protection
• Small size MSOP 10-lead package
Applications
• Point-of-load DC/DC conversion
• Set-top boxes
• Graphic cards
• LCD power supplies
• Telecom power supplies
• Networking power supplies
• Cable modems and routers
Typical Application
VIN = 5V
100μF
SD103BWS
4.7μF
0.1μF
VDD
BST
CS
1kΩ
150pF
100nF
VIN HSD
MIC2169
VSW
COMP/EN
LSD
4kΩ GND FB
IRF7821
2.5μH
IRF7821
3.3V
10kΩ
3.24kΩ
150μF x 2
MIC2169 Adjustable Output 500kHz Converter
100
95
90
85
80
75
70
65
60
55
50 0
MIC2169 Efficiency
VIN = 5V
VOUT = 3.3V
2 4 6 8 10 12 14 16
ILOAD (A)
Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com
March 2009 1 M9999-032409

1 page




MIC2169 pdf
MIC2169
Typical Characteristics
VIN = 5V
PWM Mode Supply Current
2.9 vs. Temperature
2.7
2.5
2.3
2.1
1.9
1.7
1.5
1.3
1.1
0.9
0.7
0.5-40 -20 0 20 40 60 80 100120140
TEMPERATURE (°C)
0.806
VFB vs. Temperature
0.804
0.802
0.800
0.798
0.796
0.794
0.792-60 -30 0 30 60 90 120 150
TEMPERATURE (°C)
VDD Line Regulation
5.0 vs. Temperature
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0-60 -30 0 30 60 90 120 150
TEMPERATURE (°C)
Current Limit Foldback
4
3
2
1 Top MOSFET = Si4800
RCS = 1kΩ
00 2 4 6 8
ILOAD (A)
10
March 2009
Micrel
PWM Mode Supply Current
vs. Supply Voltage
2.0
1.5
1.0
0.5 0
5 10 15
SUPPLY VOLTAGE (V)
VDD Line Regulation
6
5
4
3
2
1
00 5 10 15
VIN (V)
Oscillator Frequency
vs. Temperature
550
540
530
520
510
500
490
480
470
460
450-60 -30 0 30 60 90 120 150
TEMPERATURE (°C)
Overcurrent Trip Point
vs. Temperature
260
240
220
200
180
160
140
120
100-60 -30 0 30 60 90 120 150
TEMPERATURE (°C)
5
0.8010
VFB Line Regulation
0.8005
0.8000
0.7995
0.7990
0.7985
0.7980 0
5 10
VIN (V)
15
5.02 VDD Load Regulation
5.00
4.98
4.96
4.94
4.92
4.90 0
5 10 15 20 25 30
LOAD CURRENT (mA)
Oscillator Frequency
vs. Supply Voltage
1.5
1.0
0.5
0
-0.5
-1.0
-1.5 0
5 10
VIN (V)
15
M9999-032409

5 Page





MIC2169 arduino
MIC2169
00
50
100
150
180
100
100
1.103
1 .104
f
1 .105
1 .106
1000000
Figure 5. Phase Curve for G(s)
It can be seen from the transfer function G(s) and the gain
curve that the output inductor and capacitor create a two pole
system with a break frequency at:
fLC = 2 × π
1
L × COUT
Therefore, fLC = 3.6kHz
By looking at the phase curve, it can be seen that the output
capacitor ESR (0.025Ω) cancels one of the two poles (LCOUT)
system by introducing a zero at:
fZERO
=
2
×
π
1
× ESR
×
COUT
Therefore, FZERO = 6.36kHz.
From the point of view of compensating the voltage loop, it
is recommended to use higher ESR output capacitors since
they provide a 90° phase gain in the power path. For com-
parison purposes, Figure 6 shows the same phase curve
with an ESR value of 0.002Ω.
00
50
Micrel
gm Error Amplier
It is undesirable to have high error amplier gain at high
frequencies because high frequency noise spikes would be
picked up and transmitted at large amplitude to the output,
thus, gain should be permitted to fall off at high frequencies.At
low frequency, it is desireable to have high open-loop gain to
attenuate the power line ripple. Thus, the error amplier gain
should be allowed to increase rapidly at low frequencies.
The transfer function with R1, C1, and C2 for the internal
gm error amplier can be approximated by the following
equation:
⎡⎤
Error Amplifier(z)
=
gm
×
⎣⎢
s
×
(C1
+
1+ R1 × S ×
C2 )⎛⎝⎜1+ R1×
C1
C1× C2 ×
C1+ C2
S
⎞⎠⎟
⎦⎥
The above equation can be simplified by assuming
C2<<C1,
Error Amplifier(z)
=
gm
×
s
×
1+ R1 × S ×
(C1)(1+ R1×
C1
C2
×
S)
From the above transfer function, one can see that R1 and
C1 introduce a zero and R1 and C2 a pole at the following
frequencies:
Fzero= 1/2 π × R1 × C1
Fpole = 1/2 π × C2 × R1
Fpole@origin = 1/2 π × C1
Figures 7 and 8 show the gain and phase curves for the above
transfer function with R1 = 9.3k, C1 = 1000pF, C2 = 100pF,
and gm = .005Ω–1. It can be seen that at 50kHz, the error
amplier exhibits approximately 45° of phase margin.
60 60
40
100 20
150
180
100
100
1.103
1 .104
f
1 .105
1 .106
1000000
Figure 6. The Phase Curve with ESR = 0.002Ω
It can be seen from Figure 5 that at 50kHz, the phase is
approximately –90° versus Figure 6 where the number is
–150°. This means that the transconductance error ampli-
er has to provide a phase boost of about 45° to achieve a
closed-loop phase margin of 45° at a crossover frequency
of 50kHz for Figure 4, versus 105° for Figure 6. The simple
RC and C2 compensation scheme allows a maximum error
amplier phase boost of about 90°. Therefore, it is easier to
stabilize the MIC2169 voltage control loop by using high ESR
value output capacitors.
March 2009
11
.001
1 .103
1000
1 .104
1 .105
f
1 .106
1 .107
10000000
Figure 7. Error Amplier Gain Curve
M9999-032409

11 Page







PáginasTotal 15 Páginas
PDF Descargar[ Datasheet MIC2169.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
MIC2164300kHz PWM Buck ControllerMicrel Semiconductor
Micrel Semiconductor
MIC2164-2300kHz PWM Buck ControllerMicrel Semiconductor
Micrel Semiconductor
MIC2164-3300kHz PWM Buck ControllerMicrel Semiconductor
Micrel Semiconductor
MIC2164C300kHz PWM Buck ControllerMicrel Semiconductor
Micrel Semiconductor

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar