DataSheet.es    


PDF AM29SL800DT-100EC Data sheet ( Hoja de datos )

Número de pieza AM29SL800DT-100EC
Descripción 8 Megabit (1 M x 8-Bit/512 K x 16-Bit) CMOS 1.8 Volt-only Super Low Voltage Flash Memory
Fabricantes Advanced Micro Devices 
Logotipo Advanced Micro Devices Logotipo



Hay una vista previa y un enlace de descarga de AM29SL800DT-100EC (archivo pdf) en la parte inferior de esta página.


Total 46 Páginas

No Preview Available ! AM29SL800DT-100EC Hoja de datos, Descripción, Manual

Am29SL800D
Data Sheet
-XO\ 
7KH IROORZLQJ GRFXPHQW VSHFLILHV 6SDQVLRQ PHPRU\ SURGXFWV WKDW DUH QRZ RIIHUHG E\ ERWK $GYDQFHG
0LFUR 'HYLFHV DQG )XMLWVX $OWKRXJK WKH GRFXPHQW LV PDUNHG ZLWK WKH QDPH RI WKH FRPSDQ\ WKDW RULJ
LQDOO\ GHYHORSHG WKH VSHFLILFDWLRQ WKHVH SURGXFWV ZLOO EH RIIHUHG WR FXVWRPHUV RI ERWK $0' DQG
)XMLWVX
Continuity of Specifications
7KHUH LV QR FKDQJH WR WKLV GDWDVKHHW DV D UHVXOW RI RIIHULQJ WKH GHYLFH DV D 6SDQVLRQ SURGXFW $Q\
FKDQJHV WKDW KDYH EHHQ PDGH DUH WKH UHVXOW RI QRUPDO GDWDVKHHW LPSURYHPHQW DQG DUH QRWHG LQ WKH
GRFXPHQW UHYLVLRQ VXPPDU\ ZKHUH VXSSRUWHG )XWXUH URXWLQH UHYLVLRQV ZLOO RFFXU ZKHQ DSSURSULDWH
DQG FKDQJHV ZLOO EH QRWHG LQ D UHYLVLRQ VXPPDU\
Continuity of Ordering Part Numbers
$0' DQG )XMLWVX FRQWLQXH WR VXSSRUW H[LVWLQJ SDUW QXPEHUV EHJLQQLQJ ZLWK $P DQG 0%0  7R RUGHU
WKHVH SURGXFWV SOHDVH XVH RQO\ WKH 2UGHULQJ 3DUW 1XPEHUV OLVWHG LQ WKLV GRFXPHQW
For More Information
3OHDVH FRQWDFW \RXU ORFDO $0' RU )XMLWVX VDOHV RIILFH IRU DGGLWLRQDO LQIRUPDWLRQ DERXW 6SDQVLRQ
PHPRU\ VROXWLRQV
Qˆiyvph‡v‚ÃIˆ€ir… Ã!&$#%à Sr‰v†v‚ Ã6 6€rq€r‡ à à D††ˆrÃ9h‡r ÃHh…puà &Ã!"

1 page




AM29SL800DT-100EC pdf
ADVANCE INFORMATION
PRODUCT SELECTOR GUIDE
Family Part Number
Speed Options
90
Max access time, ns (tACC)
90
Max CE# access time, ns (tCE)
90
Max OE# access time, ns (tOE)
30
Note: See “AC Characteristics” for full specifications.
BLOCK DIAGRAM
VCC
VSS
RESET#
RY/BY#
Sector Switches
Erase Voltage
Generator
Am29SL800D
100 120
100 120
100 120
35 50
150
150
150
65
DQ0DQ15 (A-1)
Input/Output
Buffers
WE#
BYTE#
CE#
OE#
State
Control
Command
Register
PGM Voltage
Generator
Chip Enable
Output Enable
Logic
STB
Data
Latch
VCC Detector
A0–A18
Timer
STB
Y-Decoder
X-Decoder
Y-Gating
Cell Matrix
4
Am29SL800D
March 17, 2003

5 Page





AM29SL800DT-100EC arduino
ADVANCE INFORMATION
For program operations, the BYTE# pin determines
whether the device accepts program data in bytes or
words. Refer to “Word/Byte Configuration” for more
information.
The device features an Unlock Bypass mode to facil-
itate faster programming. Once the device enters the
Unlock Bypass mode, only two write cycles are
required to program a word or byte, instead of four. The
“Word/Byte Program Command Sequence” section
has details on programming data to the device using
both standard and Unlock Bypass command
sequences.
An erase operation can erase one sector, multiple sec-
tors, or the entire device. Tables 2 and 3 indicate the
address space that each sector occupies. A “sector
address” consists of the address bits required to
uniquely select a sector. The “Command Definitions”
section has details on erasing a sector or the entire
chip, or suspending/resuming the erase operation.
After the system writes the autoselect command
sequence, the device enters the autoselect mode. The
system can then read autoselect codes from the
internal register (which is separate from the memory
array) on DQ7–DQ0. Standard read cycle timings
apply in this mode. Refer to the Autoselect Mode and
Autoselect Command Sequence sections for more
information.
ICC2 in the DC Characteristics table represents the
active current specification for the write mode. The “AC
Characteristics” section contains timing specification
tables and timing diagrams for write operations.
Program and Erase Operation Status
During an erase or program operation, the system may
check the status of the operation by reading the status
bits on DQ7–DQ0. Standard read cycle timings and ICC
read specifications apply. Refer to “Write Operation
Status” for more information, and to “AC Characteris-
tics” for timing diagrams.
Standby Mode
When the system is not reading or writing to the device,
it can place the device in the standby mode. In this
mode, current consumption is greatly reduced, and the
outputs are placed in the high impedance state, inde-
pendent of the OE# input.
The device enters the CMOS standby mode when the
CE# and RESET# pins are both held at VCC ± 0.2 V.
(Note that this is a more restricted voltage range than
VIH.) If CE# and RESET# are held at VIH, but not within
VCC ± 0.2 V, the device will be in the standby mode, but
the standby current will be greater. The device requires
standard access time (tCE) for read access when the
device is in either of these standby modes, before it is
ready to read data.
The device also enters the standby mode when the
RESET# pin is driven low. Refer to the next section,
RESET#: Hardware Reset Pin.
If the device is deselected during erasure or program-
ming, the device draws active current until the
operation is completed.
ICC3 in the DC Characteristics table represents the
standby current specification.
Automatic Sleep Mode
The automatic sleep mode minimizes Flash device
energy consumption. The device automatically
enables this mode when addresses remain stable for
tACC + 50 ns. The automatic sleep mode is indepen-
dent of the CE#, WE#, and OE# control signals.
Standard address access timings provide new data
when addresses are changed. While in sleep mode,
output data is latched and always available to the
system. ICC4 in the DC Characteristics table represents
the automatic sleep mode current specification.
RESET#: Hardware Reset Pin
The RESET# pin provides a hardware method of reset-
ting the device to reading array data. When the
RESET# pin is driven low for at least a period of tRP, the
device immediately terminates any operation in
progress, tristates all output pins, and ignores all
read/write commands for the duration of the RESET#
pulse. The device also resets the internal state
machine to reading array data. The operation that was
interrupted should be reinitiated once the device is
ready to accept another command sequence, to
ensure data integrity.
Current is reduced for the duration of the RESET#
pulse. When RESET# is held at VSS±0.2 V, the device
draws CMOS standby current (ICC4). If RESET# is held
at VIL but not within VSS±0.2 V, the standby current will
be greater.
The RESET# pin may be tied to the system reset cir-
cuitry. A system reset would thus also reset the Flash
memory, enabling the system to read the boot-up firm-
ware from the Flash memory.
If RESET# is asserted during a program or erase oper-
ation, the RY/BY# pin remains a “0” (busy) until the
internal reset operation is complete, which requires a
time of tREADY (during Embedded Algorithms). The
system can thus monitor RY/BY# to determine whether
the reset operation is complete. If RESET# is asserted
when a program or erase operation is not executing
(RY/BY# pin is “1”), the reset operation is completed
within a time of tREADY (not during Embedded Algo-
rithms). The system can read data tRH after the
RESET# pin returns to VIH.
Refer to the AC Characteristics tables for RESET#
parameters and to Figure 14 for the timing diagram.
10
Am29SL800D
March 17, 2003

11 Page







PáginasTotal 46 Páginas
PDF Descargar[ Datasheet AM29SL800DT-100EC.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
AM29SL800DT-100EC8 Megabit (1 M x 8-Bit/512 K x 16-Bit) CMOS 1.8 Volt-only Super Low Voltage Flash MemoryAdvanced Micro Devices
Advanced Micro Devices
AM29SL800DT-100EI8 Megabit (1 M x 8-Bit/512 K x 16-Bit) CMOS 1.8 Volt-only Super Low Voltage Flash MemoryAdvanced Micro Devices
Advanced Micro Devices

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar