DataSheet.es    


PDF NTDV20N06L Data sheet ( Hoja de datos )

Número de pieza NTDV20N06L
Descripción Power MOSFET ( Transistor )
Fabricantes ON Semiconductor 
Logotipo ON Semiconductor Logotipo



Hay una vista previa y un enlace de descarga de NTDV20N06L (archivo pdf) en la parte inferior de esta página.


Total 8 Páginas

No Preview Available ! NTDV20N06L Hoja de datos, Descripción, Manual

NTD20N06L, NTDV20N06L
Power MOSFET
20 A, 60 V, Logic Level, N−Channel
DPAK/IPAK
Designed for low voltage, high speed switching applications in
power supplies, converters and power motor controls and bridge
circuits.
Features
AEC Q101 Qualified − NTDV20N06L
These Devices are Pb−Free and are RoHS Compliant
Typical Applications
Power Supplies
Converters
Power Motor Controls
Bridge Circuits
MAXIMUM RATINGS (TJ = 25°C unless otherwise noted)
Rating
Symbol Value
Unit
Drain−to−Source Voltage
Drain−to−Gate Voltage (RGS = 10 MW)
Gate−to−Source Voltage
− Continuous
− Non−repetitive (tpv10 ms)
Drain Current
− Continuous @ TA = 25°C
− Continuous @ TA = 100°C
− Single Pulse (tpv10 ms)
Total Power Dissipation @ TA = 25°C
Derate above 25°C
Total Power Dissipation @ TA = 25°C (Note 1)
Total Power Dissipation @ TA = 25°C (Note 2)
VDSS
VDGR
VGS
VGS
ID
ID
IDM
PD
60 Vdc
60 Vdc
Vdc
±15
±20
20 Adc
10
60 Apk
60 W
0.40 W/°C
1.88 W
1.36 W
Operating and Storage Temperature Range
TJ, Tstg − 55 to
+175
°C
Single Pulse Drain−to−Source Avalanche
Energy − Starting TJ = 25°C
(VDD = 25 Vdc, VGS = 5.0 Vdc,
L = 1.0 mH, IL(pk) = 16 A, VDS = 60 Vdc)
EAS 128 mJ
Thermal Resistance
− Junction−to−Case
− Junction−to−Ambient (Note 1)
− Junction−to−Ambient (Note 2)
RqJC
RqJA
RqJA
°C/W
2.5
80
110
Maximum Lead Temperature for Soldering
Purposes, 1/8 in from case for 10 seconds
TL 260 °C
Stresses exceeding those listed in the Maximum Ratings table may damage the
device. If any of these limits are exceeded, device functionality should not be
assumed, damage may occur and reliability may be affected.
1. When surface mounted to an FR4 board using 1 in pad size, (Cu Area 1.127 in2).
2. When surface mounted to an FR4 board using recommended pad size,
(Cu Area 0.412 in2).
© Semiconductor Components Industries, LLC, 2014
September, 2014 − Rev. 4
1
http://onsemi.com
V(BR)DSS
60 V
RDS(on) TYP
39 mW@5.0 V
ID MAX
20 A
(Note 1)
D
N−Channel
G
S
4
4
12
3
DPAK
CASE 369C
STYLE 2
1
2
3
IPAK
CASE 369D
STYLE 2
MARKING DIAGRAMS
& PIN ASSIGNMENTS
4
Drain
4
Drain
1
Gate
2
Drain
3
Source
12 3
Gate Drain Source
A
Y
WW
20N6L
G
= Assembly Location*
= Year
= Work Week
= Device Code
= Pb−Free Package
* The Assembly Location code (A) is front side
optional. In cases where the Assembly Location is
stamped in the package, the front side assembly
code may be blank.
ORDERING INFORMATION
See detailed ordering and shipping information on page 2 of
this data sheet.
Publication Order Number:
NTD20N06L/D

1 page




NTDV20N06L pdf
NTD20N06L, NTDV20N06L
6
5
4 Q1
3
2
QT
Q2
VGS
1000
VDS = 30 V
ID = 20 A
VGS = 5 V
100 tr
tf
td(off)
10 td(on)
1 ID = 20 A
TJ = 25°C
0
04
8 12 16 20
QG, TOTAL GATE CHARGE (nC)
Figure 8. Gate−To−Source and Drain−To−Source
Voltage versus Total Charge
1
1 10
RG, GATE RESISTANCE (OHMS)
Figure 9. Resistive Switching Time
Variation versus Gate Resistance
DRAIN−TO−SOURCE DIODE CHARACTERISTICS
20
VGS = 0 V
16 TJ = 25°C
100
12
8
4
0
0.6 0.68 0.76 0.84 0.92
VSD, SOURCE−TO−DRAIN VOLTAGE (VOLTS)
1
Figure 10. Diode Forward Voltage versus Current
SAFE OPERATING AREA
The Forward Biased Safe Operating Area curves define
the maximum simultaneous drain−to−source voltage and
drain current that a transistor can handle safely when it is
forward biased. Curves are based upon maximum peak
junction temperature and a case temperature (TC) of 25°C.
Peak repetitive pulsed power limits are determined by using
the thermal response data in conjunction with the procedures
discussed in AN569, “Transient Thermal Resistance −
General Data and Its Use.”
Switching between the off−state and the on−state may
traverse any load line provided neither rated peak current
(IDM) nor rated voltage (VDSS) is exceeded and the
transition time (tr,tf) do not exceed 10 ms. In addition the total
power averaged over a complete switching cycle must not
exceed (TJ(MAX) − TC)/(RqJC).
A Power MOSFET designated E−FET can be safely used
in switching circuits with unclamped inductive loads. For
reliable operation, the stored energy from circuit inductance
dissipated in the transistor while in avalanche must be less
than the rated limit and adjusted for operating conditions
differing from those specified. Although industry practice is
to rate in terms of energy, avalanche energy capability is not
a constant. The energy rating decreases non−linearly with an
increase of peak current in avalanche and peak junction
temperature.
Although many E−FETs can withstand the stress of
drain−to−source avalanche at currents up to rated pulsed
current (IDM), the energy rating is specified at rated
continuous current (ID), in accordance with industry custom.
The energy rating must be derated for temperature as shown
in the accompanying graph (Figure 12). Maximum energy at
currents below rated continuous ID can safely be assumed to
equal the values indicated.
http://onsemi.com
5

5 Page










PáginasTotal 8 Páginas
PDF Descargar[ Datasheet NTDV20N06L.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
NTDV20N06Power MOSFET ( Transistor )ON Semiconductor
ON Semiconductor
NTDV20N06LPower MOSFET ( Transistor )ON Semiconductor
ON Semiconductor

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar