DataSheet.es    


PDF ADSP-2185M Data sheet ( Hoja de datos )

Número de pieza ADSP-2185M
Descripción DSP Microcomputer
Fabricantes Analog Devices 
Logotipo Analog Devices Logotipo



Hay una vista previa y un enlace de descarga de ADSP-2185M (archivo pdf) en la parte inferior de esta página.


Total 30 Páginas

No Preview Available ! ADSP-2185M Hoja de datos, Descripción, Manual

a
DSP
Microcomputer
ADSP-2185M
FEATURES
Performance
13.3 ns Instruction Cycle Time @ 2.5 V (Internal),
75 MIPS Sustained Performance
Single-Cycle Instruction Execution
Single-Cycle Context Switch
3-Bus Architecture Allows Dual Operand Fetches in
Every Instruction Cycle
Multifunction Instructions
Power-Down Mode Featuring Low CMOS Standby Power
Dissipation with 200 CLKIN Cycle Recovery from
Power-Down Condition
Low Power Dissipation in Idle Mode
Integration
ADSP-2100 Family Code Compatible (Easy to Use
Algebraic Syntax), with Instruction Set Extensions
80K Bytes of On-Chip RAM, Configured as
16K Words Program Memory RAM
16K Words Data Memory RAM
Dual-Purpose Program Memory for Both Instruction and
Data Storage
Independent ALU, Multiplier/Accumulator, and Barrel
Shifter Computational Units
Two Independent Data Address Generators
Powerful Program Sequencer Provides Zero Overhead
Looping Conditional Instruction Execution
Programmable 16-Bit Interval Timer with Prescaler
100-Lead LQFP and 144-Ball Mini-BGA
System Interface
Flexible I/O Structure Allows 2.5 V or 3.3 V Operation;
All Inputs Tolerate up to 3.6 V Regardless of Mode
16-Bit Internal DMA Port for High-Speed Access to
On-Chip Memory (Mode Selectable)
4 MByte Memory Interface for Storage of Data Tables
and Program Overlays (Mode Selectable)
8-Bit DMA to Byte Memory for Transparent Program
and Data Memory Transfers (Mode Selectable)
I/O Memory Interface with 2048 Locations Supports
Parallel Peripherals (Mode Selectable)
Programmable Memory Strobe and Separate I/O
Memory Space Permits “Glueless” System Design
Programmable Wait State Generation
Two Double-Buffered Serial Ports with Companding
Hardware and Automatic Data Buffering
Automatic Booting of On-Chip Program Memory from
Byte-Wide External Memory, e.g., EPROM, or
through Internal DMA Port
Six External Interrupts
13 Programmable Flag Pins Provide Flexible System
Signaling
UART Emulation through Software SPORT Reconfiguration
ICE-Port™ Emulator Interface Supports Debugging in
Final Systems
FUNCTIONAL BLOCK DIAGRAM
DATA ADDRESS
GENERATORS
DAG1 DAG2
PROGRAM
SEQUENCER
POWER-DOWN
CONTROL
MEMORY
PROGRAM
MEMORY
16K ؋ 24 BIT
DATA
MEMORY
16K ؋ 16 BIT
PROGRAMMABLE
I/O
AND
FLAGS
PROGRAM MEMORY ADDRESS
FULL MEMORY MODE
EXTERNAL
ADDRESS
BUS
EXTERNAL
DATA
BUS
DATA MEMORY ADDRESS
PROGRAM MEMORY DATA
DATA MEMORY DATA
ARITHMETIC UNITS
ALU
MAC SHIFTER
ADSP-2100 BASE
ARCHITECTURE
ICE-Port is a trademark of Analog Devices, Inc.
REV. 0
SERIAL PORTS
SPORT0 SPORT1
TIMER
BYTE DMA
CONTROLLER
OR
EXTERNAL
DATA
BUS
INTERNAL
DMA
PORT
HOST MODE
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 World Wide Web Site: http://www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 2000
http://www.Datasheet4U.com

1 page




ADSP-2185M pdf
external buses with bus request/grant signals (BR, BGH, and BG).
One execution mode (Go Mode) allows the ADSP-2185M to
continue running from on-chip memory. Normal execution
mode requires the processor to halt while buses are granted .
The ADSP-2185M can respond to eleven interrupts. There can
be up to six external interrupts (one edge-sensitive, two level-
sensitive, and three configurable) and seven internal interrupts
generated by the timer, the serial ports (SPORTs), the Byte DMA
port, and the power-down circuitry. There is also a master
RESET signal. The two serial ports provide a complete synchro-
nous serial interface with optional companding in hardware and
a wide variety of framed or frameless data transmit and receive
modes of operation.
Each port can generate an internal programmable serial clock or
accept an external serial clock.
The ADSP-2185M provides up to 13 general-purpose flag pins.
The data input and output pins on SPORT1 can be alternatively
configured as an input flag and an output flag. In addition, eight
flags are programmable as inputs or outputs, and three flags are
always outputs.
A programmable interval timer generates periodic interrupts.
A 16-bit count register (TCOUNT) decrements every n pro-
cessor cycle, where n is a scaling value stored in an 8-bit registe r
(TSCALE). When the value of the count register reaches zero,
an interrupt is generated and the count register is reloaded from
a 16-bit period register (TPERIOD).
Serial Ports
The ADSP-2185M incorporates two complete synchronous
serial ports (SPORT0 and SPORT1) for serial communications
and multiprocessor communication.
Here is a brief list of the capabilities of the ADSP-2185M
SPORTs. For additional information on Serial Ports, refer to
the ADSP-2100 Family User’s Manual .
• SPORTs are bidirectional and have a separate, double-
buffered transmit and receive section.
ADSP-2185M
• SPORTs can use an external serial clock or generate their
own serial clock internally.
• SPORTs have independent framing for the receive and trans-
mit sections. Sections run in a frameless mode or with frame
synchronization signals internally or externally generated.
Frame sync signals are active high or inverted, with either of
two pulsewidths and timings.
• SPORTs support serial data word lengths from 3 to 16 bits
and provide optional A-law and µ-law companding according
to CCITT recommendation G.711.
• SPORT receive and transmit sections can generate unique
interrupts on completing a data word transfer.
• SPORTs can receive and transmit an entire circular buffer of
data with only one overhead cycle per data word. An interrupt
is generated after a data buffer transfer.
• SPORT0 has a multichannel interface to selectively receive
and transmit a 24 or 32 word, time- division multiplexed,
serial bitstream.
• SPORT1 can be configured to have two external interrupts
(IRQ0 and IRQ1) and the FI and FO signals. The internally
generated serial clock may still be used in this configuration.
PIN DESCRIPTIONS
The ADSP-2185M is available in a 100-lead LQFP package
and a 144-Ball Mini-BGA package. In order to maintain maxi-
mum functionality and reduce package size and pin count, some
serial port, programmable flag, interrupt and external bus pins
have dual, multiplexed functionality. The external bus pins are
configured during RESET only, while serial port pins are soft-
ware configurable during program execution. Flag and interrupt
functionality is retained concurrently on multiplexed pins. I n
cases where pin functionality is reconfigurable, the default state is
shown in plain text; alternate functionality is shown in italics.
REV. 0
–5–

5 Page





ADSP-2185M arduino
ADSP-2185M
CLKIN XTAL
DSP
CLKOUT
Figure 3. External Crystal Connections
RESET
The RESET signal initiates a master reset of the ADSP-2185M.
The RESET signal must be asserted during the power-up
sequence to assure proper initialization. RESET during initial
power-up must be held long enough to allow the internal clock
to stabilize. If RESET is activated any time after power-up, the
clock continues to run and does not require stabilization time.
The power-up sequence is defined as the total time required for the
crystal oscillator circuit to stabilize after a valid VDD is applied to
the processor, and for the internal phase-locked loop (PLL) to lock
onto the specific crystal frequency. A minimum of 2000 CLKIN
cycles ensures that the PLL has locked but does not include the
crystal oscillator start-up time. During this power-up sequence
the RESET signal should be held low. On any subsequent resets,
the RESET signal must meet the minimum pulsewidth specifi-
cation, tRSP.
The RESET input contains some hysteresis; however, if an
RC circuit is used to generate the RESET signal, the use of an
external Schmidt trigger is recommended.
The master reset sets all internal stack pointers to the empty stack
condition, masks all interrupts, and clears the MSTAT register.
When RESET is released, if there is no pending bus request and
the chip is configured for booting, the boot-loading sequence is
performed. The first instruction is fetched from on-chip pro-
gram memory location 0x0000 once boot loading completes.
Power Supplies
The ADSP-2185M has separate power supply connections for
the internal (VDDINT) and external (V DDEXT) power supplies.
The internal supply must meet the 2.5 V requirement. The
external supply can be connected to either a 2.5 V or 3.3 V supyp.l
All external supply pins must be connected to the same supply.
All input and I/O pins can tolerate input voltages up to 3.6 V,
regardless of the external supply voltage. This feature provides
maximum flexibility in mixing 2.5 V and 3.3 V components.
MODES OF OPERATION
Setting Memory Mode
Memory Mode selection for the ADSP-2185M is made during
chip reset through the use of the Mode C pin. This pin is multi-
plexed with the DSP’s PF2 pin, so care must be taken in how
the mode selection is made. The two methods for selecting the
value of Mode C are active and passive.
Passive Configuration
Passive Configuration involves the use a pull-up or pull-down
resistor connected to the Mode C pin. To minimize power con-
sumption, or if the PF2 pin is to be used as an output in the DSP
application, a weak pull-up or pull-down, on the order of 10 k ,
can be used. This value should be sufficient to pull the pin to the
desired level and still allow the pin to operate as a programmable
flag output without undue strain on the processor’s output drive. r
For minimum power consumption during power-down, re con-
figure PF2 to be an input, as the pull-up or pull-down will
hold the pin in a known state, and will not switch.
Table II. Modes of Operation
MODE D MODE C MODE B MODE A Booting Method
X 0 0 0 BDMA feature is used to load the first 32 program memory words from
the byte memory space. Program execution is held off until all 32 words
have been loaded. Chip is configured in Full Memory Mode. 1
X 010N
o automatic boot operations occur. Program execution starts at external
memory location 0. Chip is configured in Full Memory Mode. BDMA can
still be used, but the processor does not automatically use or wait for these
operations.
0100
BDMA feature is used to load the first 32 program memory words from
the byte memory space. Program execution is held off until all 32 words
have been loaded. Chip is configured in Host Mode. IACK has active
pull-down. (REQUIRES ADDITIONAL HARDWARE).
0101I
DMA feature is used to load any internal memory as desired. Program
execution is held off until internal program memory location 0 is written
to. Chip is configured in Host Mode. IACK has active pull-down. 1
1100
BDMA feature is used to load the first 32 program memory words from
the byte memory space. Program execution is held off until all 32 words
have been loaded. Chip is configured in Host Mode; IACK requires exter-
nal pull down. (REQUIRES ADDITIONAL HARDWARE)
1101I
DMA feature is used to load any internal memory as desired. Program
execution is held off until internal program memory location 0 is written
to. Chip is configured in Host Mode. IACK requires external pull-down.1
NOTE
1Considered as standard operating settings. Using these configurations allows for easier design and better memory management.
REV. 0
–11–

11 Page







PáginasTotal 30 Páginas
PDF Descargar[ Datasheet ADSP-2185M.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
ADSP-2185DSP MicrocomputerAnalog Devices
Analog Devices
ADSP-2185BST-115DSP MicrocomputerAnalog Devices
Analog Devices
ADSP-2185BST-133DSP MicrocomputerAnalog Devices
Analog Devices
ADSP-2185KST-115DSP MicrocomputerAnalog Devices
Analog Devices

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar