DataSheet.es    


PDF TC534 Data sheet ( Hoja de datos )

Número de pieza TC534
Descripción (TC530 / TC534) 5V Precision Data Acquisition Subsystems
Fabricantes Microchip Technology 
Logotipo Microchip Technology Logotipo



Hay una vista previa y un enlace de descarga de TC534 (archivo pdf) en la parte inferior de esta página.


Total 22 Páginas

No Preview Available ! TC534 Hoja de datos, Descripción, Manual

www.DataSheet4U.com
TC530/TC534
5V Precision Data Acquisition Subsystems
Features
• Precision (up to 17-Bits) A/D Converter
• 3-Wire Serial Port
• Flexible: User Can Trade Off Conversion Speed For
Resolution
• Single Supply Operation
• -5V Output Pin
• 4 Input, Differential Analog MUX (TC534)
• Automatic Input Polarity and Overrange Detection
• Low Operating Current: 5mA Max
• Wide Analog Input Range: ±4.2V Max
• Cost Effective
Applications
• Precision Analog Signal Processor
• Precision Sensor Interface
• High Accuracy DC Measurements
Device Selection Table
Part Number
Package
TC530COI
TC530CPJ
TC534CKW
TC534CPL
28-Pin SOIC
28-Pin PDIP (Narrow)
44-Pin PQFP
40-Pin PDIP
Temperature
Range
0°C to +70°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
Package Types
28-Pin SOIC
28-Pin PDIP
VSS 1
28 CAP-
CINT 2
27 AGND
CAZ 3
26 CAP+
BUF 4
25 VDD
ACOM 5
24 NC
CREF- 6 TC530CPI 23 OSC
CREF+ 7 TC530COI 22 VCCD
VREF- 8
21 RESET
VREF+ 9
20 EOC
VIN- 10
19 R/W
VIN+ 11
18 DIN
DGND 12
17 DCLK
N/C 13
16 DOUT
OSCOUT 14
15 OSCIN
40-Pin PDIP
VSS 1
CINT 2
CAZ 3
BUF 4
ACOM 5
CREF-
CREF+
VREF-
VREF+
6
7
8
9
CH4- 10
CH3- 11
CH2- 12
CH1- 13
CH4+ 14
CH3+ 15
CH2+ 16
CH1+ 17
DGND 18
A1 19
A0 20
TC534CPL
40 CAP-
39 AGND
38 CAP+
37 VDD
36 N/C
35 N/C
34 OSC
33 N/C
32 VCCD
31 N/C
30 RESET
29 N/C
28 N/C
27 EOC
26 R/W
25 DIN
24 DCLK
23 DOUT
22 OSCIN
21 OSCOUT
44-Pin PQFP
44 43 42 41 40 39 38 37 36 35 34
NC 1
ACOM 2
CREF-
CREF+
VREF-
VREF+
3
4
5
6
CH4- 7
CH3- 8
CH2- 9
CH1- 10
CH4+ 11
TC534CKW
33 NC
32 OSC
31 NC
30 VCDD
29 NC
28 RESET
27 NC
26 NC
25 NC
24 EOC
23 R/W
12 13 14 15 16 17 18 19 20 21 22
© 2002 Microchip Technology Inc.
DS21433B-page 1

1 page




TC534 pdf
TC530/TC534
2.0 PIN DESCRIPTIONS
www.DataSheet4U.com
The descriptions of the pins are listed in Table 2-1
TABLE 2-1: PIN FUNCTION TABLE
Pin Number Pin Number
(TC530)
(TC530)
28-Pin PDIP 28-Pin SOIC
Pin Number
(TC534)
40-Pin PDIP
Pin Number
(TC534)
44-Pin
PQFP
Symbol
Description
11
22
33
44
55
6
7
8
9
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
10
11
12
Not Used
Not Used
14
6
7
8
9
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
10
11
12
Not Used
Not Used
14
15 15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Not Used
Not Used
18
19
20
21
22
40
41
42
43
2
3
4
5
6
7
8
9
10
11
12
13
14
Not Used
Not Used
15
16
17
18
19
VSS Analog output. Negative power supply converter output and
reservoir capacitor connection. This output can be used to
provide negative bias to other devices in the system.
CINT Analog output. Integrator capacitor connection and
integrator output.
CAZ
BUF
Analog input. Auto Zero capacitor connection.
Analog output. Integrator capacitor connection and voltage
buffer output.
ACOM
Analog input. This pin is ground for all of the analog
switches in the A/D converter. It is grounded for most
applications. ACOM and the input common pin (VIN- or
CHX-) should be within the common mode range, CMR.
CREF-
CREF+
VREF-
Analog Input. Reference cap negative connection.
Analog Input. Reference cap positive connection.
Analog Input. External voltage reference negative connec-
tion.
VREF+ Analog Input. External voltage reference positive connec-
tion.
CH4- Analog Input. Multiplexer channel 4 negative differential
CH3- Analog Input. Multiplexer channel 3 negative differential
CH2- Analog Input. Multiplexer channel 2 negative differential
CH1- Analog Input. Multiplexer channel 1 negative differential
CH4+ Analog Input. Multiplexer channel 4 positive differential
CH3+ Analog Input. Multiplexer channel 3 positive differential
CH2+ Analog Input. Multiplexer channel 2 positive differential
CH1+ Analog Input. Multiplexer channel 1 positive differential
VN-
VIN+
DGND
Analog Input. Negative differential analog voltage input.
Analog Input. Positive differential analog voltage input.
Analog Input. Ground connection for serial port circuit.
A1 Logic Level Input. Multiplexer address MSB.
A0 Logic Level Input. Multiplexer address LSB.
OSCOUT
Analog Input. Timebase for state machine. This pin con-
nects to one side of an AT-cut crystal having an effective
series resistance of 100(typ) and a parallel capacitance of
20pF. If an external frequency source is used to clock the
TC530/TC534 this pin must be left floating.
OSCIN
Analog Input. This pin connects to the other side of the crys-
tal described in OSCOUT above. The TC530/TC534 may
also be clocked from an external frequency source con-
nected to this pin. The external frequency source must be a
pulse wave form with a minimum 30% duty cycle and rise
and fall times 15nsec (Max). If an external frequency source
is used, OSCOUT must be left floating. A maximum operat-
ing frequency of 2MHz (crystal) or 4MHz (external clock
source) is permitted.
© 2002 Microchip Technology Inc.
DS21433B-page 5

5 Page





TC534 arduino
4. Calculate RINT
EXAMPLE 4-3:
RINT = VINMAX/20 = 2/20 = 100k
5. Calculate CINT for maximum (4V) integrator out-
put swing:
EXAMPLE 4-4:
CINT = (TINT)(20 x 10–6)/ (VS – 0.9)
= (.066)(20 x 10–6)/(4.1)
= .32µF (use closest value: 0.33µF)
Note: Microchip recommended capacitor:
Evox-Rifa p/n: SMR5 334K50J03L
6. Choose CREF and CAZ based on conversion
rate:
EXAMPLE 4-5:
Conversions/sec = 1/(TAZ + TINT + 2TINT + 2msec)
= 1/(66msec + 66msec + 132msec + 2msec)
= 3.7 conversions/sec
from which CAZ = CREF = 0.22µF (Table 5-1)
Note: Microchip recommended capacitor:
Evox-Rifa p/n: SMR5 224K50J02L4
7. Calculate VREF.
EXAMPLE 4-6:
VREF = (VS – 0.9) (CINT) (RINT)
2(TINT)
= (4.1) (0.33 x 1–6) (105) / 2(.066)
= 1.025V
4.5 Power Supply Sequencing
Improper sequencing of the power supply inputs (VDD
vs. VCCD) can potentially cause an improper power-up
sequence to occur. See Section 4.6, Circuit Design/
Layout Considerations. Failing to insure a proper
power-up sequence can cause spurious operation.
TC530/TC534
www.DataSheet4U.com
4.6 Circuit Design/Layout
Considerations
1. Separate ground return paths should be used
for the analog and digital circuitry. Use of ground
planes and trace fill on analog circuit sections is
highly recommended EXCEPT for in and around
the integrator section and CREF, CAZ (CINT,
CREF, CAZ, RINT). Stray capacitance between
these nodes and ground appears in parallel with
the components themselves and can affect
measurement accuracy.
2. Improper sequencing of the power supply inputs
(VDD vs. VCCD) can potentially cause an
improper power-up sequence to occur in the
internal state machines. It is recommended that
the digital supply, VCCD, be powered up first.
One method of insuring the correct power-up
sequence is to delay the analog supply using a
series resistor and a capacitor. See Figure 4-1,
TC530/TC534 Typical Application.
3. Decoupling capacitors, preferably a higher
value electrolytic or tantulum in parallel with a
small ceramic or tantalum, should be used liber-
ally. This includes bypassing the supply connec-
tions of all active components and the voltage
reference.
4. Critical components should be chosen for stabil-
ity and low noise. The use of a metal-film
resistor for RINT and Polypropylene or
Polyphenelyne Sulfide (PPS) capacitors for
CINT, CAZ and CREF is highly recommended.
5. The inputs and integrator section are very high
impedance nodes. Leakage to or from these crit-
ical nodes can contribute measurement error. A
guard-ring should be used to protect the integra-
tor section from stray leakage.
6. Circuit assemblies should be exceptionally
clean to prevent the presence of contamination
from assembly, handling or the cleaning itself.
Minute conductive trace contaminates, easily
ignored in most applications, can adversely
affect the performance of high impedance cir-
cuits. The input and integrator sections should
be made as compact and close to the TC53X as
possible.
7. Digital and other dynamic signal conductors
should be kept as far from the TC53X’s analog
section as possible. The microcontroller or other
host logic should be kept quiet during a mea-
surement cycle. Background activities such as
keypad scanning, display refreshing and power
switching can introduce noise.
© 2002 Microchip Technology Inc.
DS21433B-page 11

11 Page







PáginasTotal 22 Páginas
PDF Descargar[ Datasheet TC534.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
TC53Voltage DetectorMicrochip Technology
Microchip Technology
TC530(TC530 / TC534) 5V PRECISION DATA ACQUISITION SUBSYSTEMSTelCom Semiconductor
TelCom Semiconductor
TC530(TC530 / TC534) 5V Precision Data Acquisition SubsystemsMicrochip Technology
Microchip Technology
TC531000AFCMOS MASK ROMToshiba
Toshiba

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar