DataSheetWiki


TC500 fiches techniques PDF

Microchip Technology - Precision Analog Front Ends

Numéro de référence TC500
Description Precision Analog Front Ends
Fabricant Microchip Technology 
Logo Microchip Technology 





1 Page

No Preview Available !





TC500 fiche technique
TC500/A/510/514
Precision Analog Front Ends
Features:
• Precision (up to 17 bits) A/D Converter “Front
End”
• 3-Pin Control Interface to Microprocessor
• Flexible: User Can Trade-off Conversion Speed
www.DataSheet4U.com for Resolution
• Single-Supply Operation (TC510/TC514)
• 4 Input, Differential Analog MUX (TC514)
• Automatic Input Voltage Polarity Detection
• Low Power Dissipation:
- (TC500/TC500A): 10 mW
- (TC510/TC514): 18 mW
• Wide Analog Input Range:
- ±4.2V (TC500A/TC510)
• Directly Accepts Bipolar and Differential
Input Signals
Applications:
• Precision Analog Signal Processor
• Precision Sensor Interface
• High Accuracy DC Measurements
General Description:
TheTC500/A/510/514 family are precision analog front
ends that implement dual slope A/D converters having
a maximum resolution of 17 bits plus sign. As a
minimum, each device contains the integrator, zero
crossing comparator and processor interface logic. The
TC500 is the base (16-bit max) device and requires
both positive and negative power supplies. The
TC500A is identical to the TC500 with the exception
that it has improved linearity, allowing it to operate to a
maximum resolution of 17 bits. The TC510 adds an on-
board negative power supply converter for single-
supply operation. The TC514 adds both a negative
power supply converter and a 4-input differential
analog multiplexer.
Each device has the same processor control interface
consisting of 3 wires: control inputs (A and B) and zero-
crossing comparator output (CMPTR). The processor
manipulates A, B to sequence the TC5XX through four
phases of conversion: auto-zero, integrate, de-inte-
grate and integrator zero. During the auto-zero phase,
offset voltages in the TC5XX are corrected by a closed
loop feedback mechanism. The input voltage is applied
to the integrator during the integrate phase. This
causes an integrator output dv/dt directly proportional
to the magnitude of the input voltage. The higher the
input voltage, the greater the magnitude of the voltage
stored on the integrator during this phase. At the start
of the de-integrate phase, an external voltage
reference is applied to the integrator and, at the same
time, the external host processor starts its on-board
timer. The processor maintains this state until a
transition occurs on the CMPTR output, at which time
the processor halts its timer. The resulting timer count
is the converted analog data. Integrator zero (the final
phase of conversion) removes any residue remaining
in the integrator in preparation for the next conversion.
The TC500/A/510/514 offer high resolution (up to 17
bits), superior 50/60 Hz noise rejection, low-power
operation, minimum I/O connections, low input bias
currents and lower cost compared to other converter
technologies having similar conversion speeds.
© 2006 Microchip Technology Inc.
DS21428D-page 1

PagesPages 34
Télécharger [ TC500 ]


Fiche technique recommandé

No Description détaillée Fabricant
TC500 (TC500 - TC514) Precision Analog Front Ends Microchip Technology
Microchip Technology
TC500 (TC5xx) PRECISION ANALOG FRONT ENDS TelCom Semiconductor
TelCom Semiconductor
TC500 Precision Analog Front Ends Microchip Technology
Microchip Technology
TC5001P 4-Digit Decade Counter Toshiba
Toshiba

US18650VTC5A

Lithium-Ion Battery

Sony
Sony
TSPC106

PCI Bus Bridge Memory Controller

ATMEL
ATMEL
TP9380

NPN SILICON RF POWER TRANSISTOR

Advanced Semiconductor
Advanced Semiconductor


www.DataSheetWiki.com    |   2020   |   Contactez-nous  |   Recherche