DataSheet.es    


PDF T89C51AC2 Data sheet ( Hoja de datos )

Número de pieza T89C51AC2
Descripción Enhanced 8-bit Microcontroller
Fabricantes ATMEL Corporation 
Logotipo ATMEL Corporation Logotipo



Hay una vista previa y un enlace de descarga de T89C51AC2 (archivo pdf) en la parte inferior de esta página.


Total 30 Páginas

No Preview Available ! T89C51AC2 Hoja de datos, Descripción, Manual

Features
80C51 Core Architecture
256 Bytes of On-chip RAM
1 KB of On-chip XRAM
32 KB of On-chip Flash Memory
– Data Retention: 10 Years at 85°C
Read/Write Cycle: 10K
2 KB of On-chip Flash for Bootloader
2 KB of On-chip EEPROM
Read/Write Cycle: 100K
14-sources 4-level Interrupts
Three 16-bit Timers/Counters
Full Duplex UART Compatible 80C51
Maximum Crystal Frequency 40 MHz, in X2 Mode, 20 MHz (CPU Core, 20 MHz)
Five Ports: 32 + 2 Digital I/O Lines
Five-channel 16-bit PCA with:
– PWM (8-bit)
– High-speed Output
– Timer and Edge Capture
Double Data Pointer
21-bit Watchdog Timer (7 Programmable Bits)
10-bit Resolution Analog to Digital Converter (ADC) with 8 Multiplexed Inputs
On-chip Emulation Logic (Enhanced Hook System)
Power Saving Modes:
– Idle Mode
– Power-down Mode
Power Supply: 3V to 5.5V
Temperature Range: Industrial (-40° to +85°C)
Packages: VQFP44, PLCC44
Description
The A/T89C51AC2 is a high performance Flash version of the 80C51 single chip 8-bit
microcontrollers. It contains a 32 KB Flash memory block for program and data.
The 32 KB Flash memory can be programmed either in parallel mode or in serial
mode with the ISP capability or with software. The programming voltage is internally
generated from the standard VCC pin.
The A/T89C51AC2 retains all features of the 80C51 with 256 bytes of internal RAM, a
7-source 4-level interrupt controller and three timer/counters. In addition, the
A/T89C51AC2 has a 10-bit A/D converter, a 2 KB Boot Flash memory, 2 KB EEPROM
for data, a Programmable Counter Array, an XRAM of 1024 bytes, a Hardware Watch-
Dog Timer, and a more versatile serial channel that facilitates multiprocessor
communication (EUART). The fully static design of the A/T89C51AC2 reduces system
power consumption by bringing the clock frequency down to any value, even DC,
without loss of data.
The A/T89C51AC2 has two software-selectable modes of reduced activity and an 8-
bit clock prescaler for further reduction in power consumption. In the idle mode the
CPU is frozen while the peripherals and the interrupt system are still operating. In the
Power-down mode the RAM is saved and all other functions are inoperative.
The added features of the A/T89C51AC2 make it more powerful for applications that
need A/D conversion, pulse width modulation, high speed I/O and counting capabili-
ties such as industrial control, consumer goods, alarms, motor control, among others.
While remaining fully compatible with the 80C52, the T8C51AC2 offers a superset of
this standard microcontroller. In X2 mode, a maximum external clock rate of 20 MHz
reaches a 300 ns cycle time.
Enhanced 8-bit
Microcontroller
with 32 KB Flash
Memory
AT89C51AC2
T89C51AC2
Rev. 4127H–8051–02/08
1

1 page




T89C51AC2 pdf
A/T89C51AC2
Table 1. Pin Description (Continued)
Pin Name Type Description
P3.0:7
I/O Port 3:
Is an 8-bit bi-directional I/O port with internal pull-ups. Port 3 pins that have 1’s written to them are pulled high by the internal
pull-up transistors and can be used as inputs in this state. As inputs, Port 3 pins that are being pulled low externally will be a
source of current (IIL, see section "Electrical Characteristic") because of the internal pull-ups.
The output latch corresponding to a secondary function must be programmed to one for that function to operate (except for
TxD and WR). The secondary functions are assigned to the pins of port 3 as follows:
P4.0:1
RESET
ALE
PSEN
EA
XTAL1
XTAL2
P3.0/RxD:
Receiver data input (asynchronous) or data input/output (synchronous) of the serial interface
P3.1/TxD:
Transmitter data output (asynchronous) or clock output (synchronous) of the serial interface
P3.2/INT0:
External interrupt 0 input/timer 0 gate control input
P3.3/INT1:
External interrupt 1 input/timer 1 gate control input
P3.4/T0:
Timer 0 counter input
P3.5/T1:
Timer 1 counter input
P3.6/WR:
External Data Memory write strobe; latches the data byte from port 0 into the external data memory
P3.7/RD:
External Data Memory read strobe; Enables the external data memory.
It can drive CMOS inputs without external pull-ups.
I/O Port 4:
Is an 2-bit bi-directional I/O port with internal pull-ups. Port 4 pins that have 1’s written to them are pulled high by the internal
pull-ups and can be used as inputs in this state. As inputs, Port 4 pins that are being pulled low externally will be a source of
current (IIL, on the datasheet) because of the internal pull-up transistor.
P4.0
P4.1:
It can drive CMOS inputs without external pull-ups.
Reset:
I/O A high level on this pin during two machine cycles while the oscillator is running resets the device. An internal pull-down
resistor to VSS permits power-on reset using only an external capacitor to VCC.
ALE:
O
An Address Latch Enable output for latching the low byte of the address during accesses to the external memory. The ALE is
activated every 1/6 oscillator periods (1/3 in X2 mode) except during an external data memory access. When instructions are
executed from an internal Flash (EA = 1), ALE generation can be disabled by the software.
PSEN:
The Program Store Enable output is a control signal that enables the external program memory of the bus during external
O fetch operations. It is activated twice each machine cycle during fetches from the external program memory. However, when
executing from of the external program memory two activations of PSEN are skipped during each access to the external Data
memory. The PSEN is not activated for internal fetches.
EA:
I When External Access is held at the high level, instructions are fetched from the internal Flash when the program counter is
less then 8000H. When held at the low level,A/T89C51AC2 fetches all instructions from the external program memory.
XTAL1:
I
Input of the inverting oscillator amplifier and input of the internal clock generator circuits.
To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 is left unconnected. To operate
above a frequency of 16 MHz, a duty cycle of 50% should be maintained.
O
XTAL2:
Output from the inverting oscillator amplifier.
4127H–8051–02/08
5

5 Page





T89C51AC2 arduino
A/T89C51AC2
Table 5. Timers SFRs (Continued)
Mnemonic Add Name
T2CON
C8h
Timer/Counter 2
control
T2MOD
C9h
Timer/Counter 2
Mode
RCAP2H
Timer/Counter 2
CBh Reload/Capture High
byte
RCAP2L
Timer/Counter 2
CAh Reload/Capture Low
byte
WDTRST
A6h
Watchdog Timer
Reset
WDTPRG
A7h
Watchdog Timer
Program
7
TF2
6
EXF2
5
RCLK
4
TCLK
3
EXEN2
2
TR2
–––––
–––––
–––––
– – – – S2
1
C/T2#
0
CP/RL2#
T2OE
DCEN
––
––
––
S1 S0
Table 6. Serial I/O Port SFRs
Mnemonic Add Name
765432
SCON
98h Serial Control
FE/SM0
SM1
SM2
REN
TB8
RB8
SBUF
99h Serial Data Buffer
SADEN
B9h Slave Address Mask
SADDR
A9h Slave Address
––––––
1
TI
0
RI
Table 7. PCA SFRs
Mnemonic Add Name
76543210
CCON
D8h PCA Timer/Counter Control
CF
CR
– CCF4
CCF3
CCF2
CCF1
CCF0
CMOD D9h PCA Timer/Counter Mode
CIDL
WDTE
– CPS1 CPS0 ECF
CL E9h PCA Timer/Counter Low byte
––––––––
CH F9h PCA Timer/Counter High byte
––––––––
CCAPM0
CCAPM1
CCAPM2
CCAPM3
CCAPM4
DAh PCA Timer/Counter Mode 0
DBh PCA Timer/Counter Mode 1
DCh PCA Timer/Counter Mode 2
DDh PCA Timer/Counter Mode 3
DEh PCA Timer/Counter Mode 4
ECOM0 CAPP0 CAPN0 MAT0
ECOM1 CAPP1 CAPN1 MAT1
– ECOM2 CAPP2 CAPN2 MAT2
ECOM3 CAPP3 CAPN3 MAT3
ECOM4 CAPP4 CAPN4 MAT4
TOG0
TOG1
TOG2
TOG3
TOG4
PWM0
PWM1
PWM2
PWM3
PWM4
ECCF0
ECCF1
ECCF2
ECCF3
ECCF4
CCAP0H
CCAP1H
CCAP2H
CCAP3H
CCAP4H
FAh PCA Compare Capture Module 0 H CCAP0H7 CCAP0H6 CCAP0H5 CCAP0H4 CCAP0H3 CCAP0H2 CCAP0H1 CCAP0H0
FBh PCA Compare Capture Module 1 H CCAP1H7 CCAP1H6 CCAP1H5 CCAP1H4 CCAP1H3 CCAP1H2 CCAP1H1 CCAP1H0
FCh PCA Compare Capture Module 2 H CCAP2H7 CCAP2H6 CCAP2H5 CCAP2H4 CCAP2H3 CCAP2H2 CCAP2H1 CCAP2H0
FDh PCA Compare Capture Module 3 H CCAP3H7 CCAP3H6 CCAP3H5 CCAP3H4 CCAP3H3 CCAP3H2 CCAP3H1 CCAP3H0
FEh PCA Compare Capture Module 4 H CCAP4H7 CCAP4H6 CCAP4H5 CCAP4H4 CCAP4H3 CCAP4H2 CCAP4H1 CCAP4H0
4127H–8051–02/08
11

11 Page







PáginasTotal 30 Páginas
PDF Descargar[ Datasheet T89C51AC2.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
T89C51AC2Enhanced 8-bit MicrocontrollerATMEL Corporation
ATMEL Corporation

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar