DataSheet.es    


PDF M29DW640D Data sheet ( Hoja de datos )

Número de pieza M29DW640D
Descripción 64 Mbit (8Mb x8 or 4Mb x16 / Multiple Bank / Page / Boot Block) 3V Supply Flash Memory
Fabricantes ST Microelectronics 
Logotipo ST Microelectronics Logotipo



Hay una vista previa y un enlace de descarga de M29DW640D (archivo pdf) en la parte inferior de esta página.


Total 30 Páginas

No Preview Available ! M29DW640D Hoja de datos, Descripción, Manual

M29DW640D
64 Mbit (8Mb x8 or 4Mb x16, Multiple Bank, Page, Boot Block)
3V Supply Flash Memory
FEATURES SUMMARY
SUPPLY VOLTAGE
– VCC = 2.7V to 3.6V for Program, Erase
and Read
– VPP =12V for Fast Program (optional)
ASYNCHRONOUS PAGE READ MODE
– Page Width 4 Words
– Page Access 25, 30ns
– Random Access 70, 90ns
PROGRAMMING TIME
– 10µs per Byte/Word typical
– 4 Words / 8 Bytes at-a-time Program
MEMORY BLOCKS
– Quadruple Bank Memory Array:
8Mbit+24Mbit+24Mbit+8Mbit
– Parameter Blocks (at both Top and
Bottom)
DUAL OPERATIONS
– While Program or Erase in a group of
banks (from 1 to 3), Read in any of the
other banks
PROGRAM/ ERASE SUSPEND and
RESUME MODES
– Read from any Block during Program
Suspend
– Read and Program another Block during
Erase Suspend
UNLOCK BYPASS PROGRAM COMMAND
– Faster Production/Batch Programming
VPP/WP PIN for FAST PROGRAM and
WRITE PROTECT
TEMPORARY BLOCK UNPROTECTION
MODE
COMMON FLASH INTERFACE
– 64 bit Security Code
EXTENDED MEMORY BLOCK
– Extra block used as security block or to
store additional information
Figure 1. Packages
TSOP48 (N)
12 x 20mm
FBGA
TFBGA63 (ZA)
7 x 11mm
LOW POWER CONSUMPTION
– Standby and Automatic Standby
100,000 PROGRAM/ERASE CYCLES per
BLOCK
ELECTRONIC SIGNATURE
– Manufacturer Code: 0020h
– Device Code: 227Eh + 2202h + 2201h
August 2004
1/55

1 page




M29DW640D pdf
M29DW640D
Figure 23.In-System Equipment Group Protect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 24.In-System Equipment Chip Unprotect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 32. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5/55

5 Page





M29DW640D arduino
M29DW640D
SIGNAL DESCRIPTIONS
See Figure 2., Logic Diagram, and Table
1., Signal Names, for a brief overview of the sig-
nals connected to this device.
Address Inputs (A0-A21). The Address Inputs
select the cells in the memory array to access dur-
ing Bus Read operations. During Bus Write opera-
tions they control the commands sent to the
Command Interface of the internal state machine.
Data Inputs/Outputs (DQ0-DQ7). The Data I/O
outputs the data stored at the selected address
during a Bus Read operation. During Bus Write
operations they represent the commands sent to
the Command Interface of the internal state ma-
chine.
Data Inputs/Outputs (DQ8-DQ14). The Data I/O
outputs the data stored at the selected address
during a Bus Read operation when BYTE is High,
VIH. When BYTE is Low, VIL, these pins are not
used and are high impedance. During Bus Write
operations the Command Register does not use
these bits. When reading the Status Register
these bits should be ignored.
Data Input/Output or Address Input (DQ15A–1).
When BYTE is High, VIH, this pin behaves as a
Data Input/Output pin (as DQ8-DQ14). When
BYTE is Low, VIL, this pin behaves as an address
pin; DQ15A–1 Low will select the LSB of the ad-
dressed Word, DQ15A–1 High will select the MSB.
Throughout the text consider references to the
Data Input/Output to include this pin when BYTE is
High and references to the Address Inputs to in-
clude this pin when BYTE is Low except when
stated explicitly otherwise.
Chip Enable (E). The Chip Enable, E, activates
the memory, allowing Bus Read and Bus Write op-
erations to be performed. When Chip Enable is
High, VIH, all other pins are ignored.
Output Enable (G). The Output Enable, G, con-
trols the Bus Read operation of the memory.
Write Enable (W). The Write Enable, W, controls
the Bus Write operation of the memory’s Com-
mand Interface.
VPP/Write Protect (VPP/WP). The VPP/Write
Protect pin provides two functions. The VPP func-
tion allows the memory to use an external high
voltage power supply to reduce the time required
for Program operations. This is achieved by by-
passing the unlock cycles and/or using the multi-
ple Word (2 or 4 at-a-time) or multiple Byte
Program (2, 4 or 8 at-a-time) commands. The
Write Protect function provides a hardware meth-
od of protecting the four outermost boot blocks
(two at the top, and two at the bottom of the ad-
dress space).
When VPP/Write Protect is Low, VIL, the memory
protects the four outermost boot blocks; Program
and Erase operations in these blocks are ignored
while VPP/Write Protect is Low, even when RP is
at VID.
When VPP/Write Protect is High, VIH, the memory
reverts to the previous protection status of the four
outermost boot blocks (two at the top, and two at
the bottom of the address space). Program and
Erase operations can now modify the data in these
blocks unless the blocks are protected using Block
Protection.
When VPP/Write Protect is raised to VPP the mem-
ory automatically enters the Unlock Bypass mode.
When VPP/Write Protect returns to VIH or VIL nor-
mal operation resumes. During Unlock Bypass
Program operations the memory draws IPP from
the pin to supply the programming circuits. See the
description of the Unlock Bypass command in the
Command Interface section. The transitions from
VIH to VPP and from VPP to VIH must be slower
than tVHVPP, see Figure 18.
Never raise VPP/Write Protect to VPP from any
mode except Read mode, otherwise the memory
may be left in an indeterminate state.
The VPP/Write Protect pin must not be left floating
or unconnected or the device may become unreli-
able. A 0.1µF capacitor should be connected be-
tween the VPP/Write Protect pin and the VSS
Ground pin to decouple the current surges from
the power supply. The PCB track widths must be
sufficient to carry the currents required during
Unlock Bypass Program, IPP.
Reset/Block Temporary Unprotect (RP). The
Reset/Block Temporary Unprotect pin can be
used to apply a Hardware Reset to the memory or
to temporarily unprotect all Blocks that have been
protected.
Note that if VPP/WP is at VIL, then the four outer-
most boot blocks will remain protected even if RP
is at VID.
A Hardware Reset is achieved by holding Reset/
Block Temporary Unprotect Low, VIL, for at least
tPLPX. After Reset/Block Temporary Unprotect
goes High, VIH, the memory will be ready for Bus
Read and Bus Write operations after tPHEL or
tRHEL, whichever occurs last. See the Ready/Busy
Output section, Table 19 and Figure 17., Reset/
Block Temporary Unprotect AC Waveforms.
Holding RP at VID will temporarily unprotect the
protected Blocks in the memory. Program and
Erase operations on all blocks will be possible.
The transition from VIH to VID must be slower than
tPHPHH.
11/55

11 Page







PáginasTotal 30 Páginas
PDF Descargar[ Datasheet M29DW640D.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
M29DW640D64 Mbit (8Mb x8 or 4Mb x16 / Multiple Bank / Page / Boot Block) 3V Supply Flash MemoryST Microelectronics
ST Microelectronics

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar