DataSheet.es    


PDF XC73144 Data sheet ( Hoja de datos )

Número de pieza XC73144
Descripción 144-Macrocell CMOS EPLD
Fabricantes Xilinx 
Logotipo Xilinx Logotipo



Hay una vista previa y un enlace de descarga de XC73144 (archivo pdf) en la parte inferior de esta página.


Total 10 Páginas

No Preview Available ! XC73144 Hoja de datos, Descripción, Manual

® XC7300 CMOS EPLD Family
Product Description
Features
• High-performance Erasable Programmable Logic
Devices (EPLDs)
– 5 / 7.5 ns pin-to-pin speeds on all fast inputs
– Up to 167 MHz maximum clock frequency
• Advanced Dual-Block architecture
– Fast Function Blocks
– High-Density Function Blocks
(XC7354, XC7372, XC73108, XC73144)
• 100% interconnect matrix
• High-speed arithmetic carry network
– 1 ns ripple-carry delay per bit
– 43 to 61 MHz 18-bit accumulators
• Multiple independent clocks
• Each input programmable as direct, latched, or
registered
• High-drive 24 mA output
• I/O operation at 3.3 V or 5 V
• Meets JEDEC Standard (8-1A) for 3.3 V ±0.3 V
• Power management options
• Multiple security bits for design protection
• Supported by industry standard design and verification
tools
• 100% PCI compliant
Description
The XC7300 family employs a unique Dual-Block architec-
ture, which provides high speed operations via Fast Func-
tion Blocks and/or high density capability via High Density
Function Blocks.
Fast Function Blocks (FFBs) provide fast, pin-to-pin
speed and logic throughput for critical decoding and ultra-
fast state machine applications. High-Density Function
Blocks (FBs) provide maximum logic density and system-
level features to implement complex functions with pre-
dictable timing for adders and accumulators, wide func-
tions and state machines requiring large numbers of
product terms, and other forms of complex logic.
In addition, the XC7300 architecture employs the Univer-
sal Interconnect Matrix (UIM) which guarantees 100%
interconnect of all internal functions. This interconnect
scheme provides constant, short interconnect delays for
all routing paths through the UIM. Constant interconnect
delays simplify device timing and guarantee design perfor-
mance, regardless of logic placement within the chip.
All XC7300 devices are designed in 0.8µ CMOS EPROM
technology.
All XC7300 EPLDs include programmable power manage-
ment features to specify high-performance or low-power
operation on an individual Macrocell-by-Macrocell basis.
Unused Macrocells are automatically turned off to mini-
The XC7300 Family
Typical 22V10 Equivalent
Number of Macrocells
Number of Function Blocks
Number of Flip-Flops
Number of Fast Inputs
Number of Signal Pins
XC7318
1.5 – 2
18
2
18
12
38
XC7336
3–4
36
4
36
12
38
XC7354
6
54
6
108
12
58
XC7372
8
72
8
126
12
84
XC73108
12
108
12
198
12
120
XC73144
16
144
16
276
12
156
2-1
This document was created with FrameMaker 4 0 2

1 page




XC73144 pdf
21
Inputs
from
UIM
3
from
Fast
Input
Pins
(FI)
AND Array
12 Sharable 5 Private
P-Terms per P-Terms per
Function Block Macrocell
4
8
5
Arithmetic Carry-In from
Previous Macrocell
Fast
Clocks
01
CLOCK
OE*
SET
RESET
C in
D1
F
D2
C out
ALU
1 of 9 Macrocells
RS
DQ
To 8 More
Macrocells
Shift-In
from Previous MC
Shift-Out
to Next MC
Local
Feedback
Clock
Select
Register
Trasparent
Control
Feedback
Polarity
* OE is forced high when P-term is not used
Arithmetic
Carry-Out to Next
Macrocell
Feedback to UIM
Input to UIM
Feedback
Enable
Override
Global
Fast OE
I/O
(see fig.7)
OE Control
Input-Pad
Register/Latch
(optional)
Pin
X5485
Figure 5. High-Density Function Block and Macrocell Schematic
Table 1. Function Generator Logic Operations
D1:+: D2
D1 * D2
D1 + D2
D1
D1
D1 * D2
D1 + D2
Function
D1:+: D2
D1 * D2
D1 + D2
D2
D2
D1 * D2
D1 + D2
Arithmetic Logic Unit (ALU)
D1
Sum-of-
Products
D2
Sum-of-
Products
D1
Function
Generator
D2
Carry Output
0
1
To Macrocell
Flip-Flop
Therefore, the ALU can implement one additional layer
of logic without any speed penalty.
In arithmetic mode, the ALU block can be programmed to
generate the arithmetic sum or difference of the D1 and
D2 inputs. Combined with the carry input from the next
lower Macrocell, the ALU operates as a 1-bit full adder
generating a carry output to the next higher Macrocell.
The carry chain propagates between adjacent Macrocells
and also crosses the boundaries between Function
Blocks. This dedicated carry chain overcomes the inher-
ent speed and density problems of the traditional EPLD
architecture when trying to perform arithmetic functions.
Carry Lookahead
Each Function Block provides a carry lookahead genera-
tor capable of anticipating the carry across all nine Mac-
rocells. The carry lookahead generator reduces the
ripple-carry delay of wide arithmetic functions such as
add, subtract, and magnitude compare to that of the first
nine bits, plus the carry lookahead delay of the higher-
order Function Blocks.
Arithmetic
Carry Control
Figure 6. ALU Schematic
Carry Input
Macrocell Flip-Flop
The ALU block output drives the input of a programmable
X3206 D-type flip-flop. The flip-flop is triggered by the rising edge
of the clock input, but it can be configured as transparent,
2-5

5 Page










PáginasTotal 10 Páginas
PDF Descargar[ Datasheet XC73144.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
XC73144XC7300 CMOS EPLD FamilyXilinx
Xilinx
XC73144144-Macrocell CMOS EPLDXilinx
Xilinx
XC73144-10144-Macrocell CMOS EPLDXilinx
Xilinx
XC73144-12144-Macrocell CMOS EPLDXilinx
Xilinx

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar