DataSheet.es    


PDF AD5340 Data sheet ( Hoja de datos )

Número de pieza AD5340
Descripción Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACs
Fabricantes Analog Devices 
Logotipo Analog Devices Logotipo



Hay una vista previa y un enlace de descarga de AD5340 (archivo pdf) en la parte inferior de esta página.


Total 28 Páginas

No Preview Available ! AD5340 Hoja de datos, Descripción, Manual

2.5 V to 5.5 V, 115 μA, Parallel Interface
Single Voltage-Output 8-/10-/12-Bit DACs
AD5330/AD5331/AD5340/AD5341
FEATURES
GENERAL DESCRIPTION
AD5330: single 8-bit DAC in 20-lead TSSOP
AD5331: single 10-bit DAC in 20-lead TSSOP
AD5340: single 12-bit DAC in 24-lead TSSOP
AD5341: single 12-bit DAC in 20-lead TSSOP
Low power operation: 115 μA @ 3 V, 140 μA @ 5 V
Power-down to 80 nA @ 3 V, 200 nA @ 5 V via PD Pin
2.5 V to 5.5 V power supply
Double-buffered input logic
Guaranteed monotonic by design over all codes
Buffered/unbuffered reference input options
Output range: 0 V to VREF or 0 V to 2 × VREF
Power-on reset to 0 V
Simultaneous update of DAC outputs via LDAC pin
Asynchronous CLR facility
Low power parallel data interface
On-chip rail-to-rail output buffer amplifiers
Temperature range: −40°C to +105°C
APPLICATIONS
Portable battery-powered instruments
Digital gain and offset adjustment
Programmable voltage and current sources
Programmable attenuators
Industrial process control
The AD5330/AD5331/AD5340/AD53411 are single 8-/10-/12-
bit DACs. They operate from a 2.5 V to 5.5 V supply consuming
just 115 μA at 3 V and feature a power-down mode that further
reduces the current to 80 nA. The devices incorporate an on-chip
output buffer that can drive the output to both supply rails, but
the AD5330, AD5340, and AD5341 allow a choice of buffered
or unbuffered reference input.
The AD5330/AD5331/AD5340/AD5341 have a parallel
interface. CS selects the device and data is loaded into the
input registers on the rising edge of WR.
The GAIN pin allows the output range to be set at 0 V to VREF or
0 V to 2 × VREF.
Input data to the DACs is double-buffered, allowing simultane-
ous update of multiple DACs in a system using the LDAC pin.
An asynchronous CLR input is also provided, which resets the
contents of the input register and the DAC register to all zeros.
These devices also incorporate a power-on reset circuit that
ensures that the DAC output powers on to 0 V and remains
there until valid data is written to the device.
The AD5330/AD5331/AD5340/AD5341 are available in thin
shrink small outline packages (TSSOP).
1 Protected by U.S. Patent Number 5,969,657.
FUNCTIONAL BLOCK DIAGRAM
VREF
3
VDD
12
POWER-ON
RESET
AD5330
BUF 1
GAIN 8
DB.. 7 20
DB0 13
CS 6
WR 7
CLR 9
LDAC 10
INPUT
REGISTER
DAC
REGISTER
8-BIT
DAC
BUFFER
4 VOUT
RESET
POWER-DOWN
LOGIC
Figure 1. AD5330
11 5
PD GND
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarksandregisteredtrademarksarethepropertyoftheirrespectiveowners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2000–2008 Analog Devices, Inc. All rights reserved.

1 page




AD5340 pdf
AD5330/AD5331/AD5340/AD5341
TIMING CHARACTERISTICS1, 2, 3
VDD = 2.5 V to 5.5 V, all specifications TMIN to TMAX, unless otherwise noted.
Table 3.
Parameter
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10
t11
t12
t13
Limit at TMIN, TMAX
0
0
20
5
4.5
5
5
4.5
5
4.5
20
20
50
Unit
ns min
ns min
ns min
ns min
ns min
ns min
ns min
ns min
ns min
ns min
ns min
ns min
ns min
Condition/Comments
CS to WR setup time.
CS to WR hold time.
WR pulse width.
Data, GAIN, BUF, HBEN setup time.
Data, GAIN, BUF, HBEN hold time.
Synchronous mode; WR falling to LDAC falling.
Synchronous mode; LDAC falling to WR rising.
Synchronous mode; WR rising to LDAC rising.
Asynchronous mode; LDAC rising to WR rising.
Asynchronous mode; WR rising to LDAC falling.
LDAC pulse width.
CLR pulse width.
Time between WR cycles.
1 Guaranteed by design and characterization, not production tested.
2 All input signals are specified with tR = tF = 5 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.
3 See Figure 2.
CS
WR
DATA,
GAIN,
BUF,
HBEN
LDAC1
LDAC2
t1 t2
t3
t4 t5
t13
t6 t7 t8
t9 t10
t11
CLR
t12
NOTES:
1SYNCHRONOUS LDAC UPDATE MODE
2ASYNCHRONOUS LDAC UPDATE MODE
Figure 2. Parallel Interface Timing Diagram
Rev. A | Page 5 of 28

5 Page





AD5340 arduino
TERMINOLOGY
Relative Accuracy or Integral Nonlinearity (INL)
For the DAC, relative accuracy or INL is a measure of the
maximum deviation, in LSBs, from a straight line passing
through the actual endpoints of the DAC transfer function.
Typical INL vs. code plots can be seen in Figure 14, Figure 15,
and Figure 16.
Differential Nonlinearity (DNL)
DNL is the difference between the measured change and the
ideal 1 LSB change between any two adjacent codes. A specified
differential nonlinearity of ±1 LSB maximum ensures mono-
tonicity. This DAC is guaranteed monotonic by design. Typical
DNL vs. code plots can be seen in Figure 17, Figure 18, and
Figure 19.
Gain Error
This is a measure of the span error of the DAC (including any
error in the gain of the buffer amplifier). It is the deviation in
slope of the actual DAC transfer characteristic from the ideal,
expressed as a percentage of the full-scale range. This is
illustrated in Figure 11.
Offset Error
This is a measure of the offset error of the DAC and the output
amplifier. It is expressed as a percentage of the full-scale range.
If the offset voltage is positive, the output voltage is still positive
at zero input code. This is shown in Figure 12. Because the
DACs operate from a single supply, a negative offset cannot
appear at the output of the buffer amplifier. Instead, there is
a code close to zero at which the amplifier output saturates
(amplifier footroom). Below this code, there is a deadband over
which the output voltage does not change. This is illustrated in
Figure 13.
POSITIVE
GAIN ERROR
NEGATIVE
GAIN ERROR
OUTPUT
VOLTAGE
ACTUAL
IDEAL
AD5330/AD5331/AD5340/AD5341
OUTPUT
VOLTAGE
GAIN ERROR
AND
OFFSET ERROR
ACTUAL
IDEAL
POSITIVE
OFFSET
DAC CODE
Figure 12. Positive Offset Error and Gain Error
OUTPUT
VOLTAGE
GAIN ERROR
AND
OFFSET ERROR
ACTUAL
IDEAL
NEGATIVE
OFFSET
DAC CODE
AMPLIFIER
FOOTROOM
(~1mV)
DEADBAND CODES
NEGATIVE
OFFSET
DAC CODE
Figure 11. Gain Error
Figure 13. Negative Offset Error and Gain Error
Rev. A | Page 11 of 28

11 Page







PáginasTotal 28 Páginas
PDF Descargar[ Datasheet AD5340.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
AD534Internally Trimmed Precision IC MultiplierAnalog Devices
Analog Devices
AD5340Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACsAnalog Devices
Analog Devices
AD5341Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACsAnalog Devices
Analog Devices
AD5342Parallel Interface Dual Voltage-Output 8-/10-/12-Bit DACsAnalog Devices
Analog Devices

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar