DataSheetWiki


AD5331 fiches techniques PDF

Analog Devices - Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACs

Numéro de référence AD5331
Description Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACs
Fabricant Analog Devices 
Logo Analog Devices 





1 Page

No Preview Available !





AD5331 fiche technique
2.5 V to 5.5 V, 115 μA, Parallel Interface
Single Voltage-Output 8-/10-/12-Bit DACs
AD5330/AD5331/AD5340/AD5341
FEATURES
GENERAL DESCRIPTION
AD5330: single 8-bit DAC in 20-lead TSSOP
AD5331: single 10-bit DAC in 20-lead TSSOP
AD5340: single 12-bit DAC in 24-lead TSSOP
AD5341: single 12-bit DAC in 20-lead TSSOP
Low power operation: 115 μA @ 3 V, 140 μA @ 5 V
Power-down to 80 nA @ 3 V, 200 nA @ 5 V via PD Pin
2.5 V to 5.5 V power supply
Double-buffered input logic
Guaranteed monotonic by design over all codes
Buffered/unbuffered reference input options
Output range: 0 V to VREF or 0 V to 2 × VREF
Power-on reset to 0 V
Simultaneous update of DAC outputs via LDAC pin
Asynchronous CLR facility
Low power parallel data interface
On-chip rail-to-rail output buffer amplifiers
Temperature range: −40°C to +105°C
APPLICATIONS
Portable battery-powered instruments
Digital gain and offset adjustment
Programmable voltage and current sources
Programmable attenuators
Industrial process control
The AD5330/AD5331/AD5340/AD53411 are single 8-/10-/12-
bit DACs. They operate from a 2.5 V to 5.5 V supply consuming
just 115 μA at 3 V and feature a power-down mode that further
reduces the current to 80 nA. The devices incorporate an on-chip
output buffer that can drive the output to both supply rails, but
the AD5330, AD5340, and AD5341 allow a choice of buffered
or unbuffered reference input.
The AD5330/AD5331/AD5340/AD5341 have a parallel
interface. CS selects the device and data is loaded into the
input registers on the rising edge of WR.
The GAIN pin allows the output range to be set at 0 V to VREF or
0 V to 2 × VREF.
Input data to the DACs is double-buffered, allowing simultane-
ous update of multiple DACs in a system using the LDAC pin.
An asynchronous CLR input is also provided, which resets the
contents of the input register and the DAC register to all zeros.
These devices also incorporate a power-on reset circuit that
ensures that the DAC output powers on to 0 V and remains
there until valid data is written to the device.
The AD5330/AD5331/AD5340/AD5341 are available in thin
shrink small outline packages (TSSOP).
1 Protected by U.S. Patent Number 5,969,657.
FUNCTIONAL BLOCK DIAGRAM
VREF
3
VDD
12
POWER-ON
RESET
AD5330
BUF 1
GAIN 8
DB.. 7 20
DB0 13
CS 6
WR 7
CLR 9
LDAC 10
INPUT
REGISTER
DAC
REGISTER
8-BIT
DAC
BUFFER
4 VOUT
RESET
POWER-DOWN
LOGIC
Figure 1. AD5330
11 5
PD GND
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarksandregisteredtrademarksarethepropertyoftheirrespectiveowners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2000–2008 Analog Devices, Inc. All rights reserved.

PagesPages 28
Télécharger [ AD5331 ]


Fiche technique recommandé

No Description détaillée Fabricant
AD5330 Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACs Analog Devices
Analog Devices
AD5331 Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACs Analog Devices
Analog Devices
AD5332 Parallel Interface Dual Voltage-Output 8-/10-/12-Bit DACs Analog Devices
Analog Devices
AD5333 Parallel Interface Dual Voltage-Output 8-/10-/12-Bit DACs Analog Devices
Analog Devices

US18650VTC5A

Lithium-Ion Battery

Sony
Sony
TSPC106

PCI Bus Bridge Memory Controller

ATMEL
ATMEL
TP9380

NPN SILICON RF POWER TRANSISTOR

Advanced Semiconductor
Advanced Semiconductor


www.DataSheetWiki.com    |   2020   |   Contactez-nous  |   Recherche