DataSheet.es    


PDF NSV45030T1G Data sheet ( Hoja de datos )

Número de pieza NSV45030T1G
Descripción Constant Current Regulator & LED Driver
Fabricantes ON Semiconductor 
Logotipo ON Semiconductor Logotipo



Hay una vista previa y un enlace de descarga de NSV45030T1G (archivo pdf) en la parte inferior de esta página.


Total 7 Páginas

No Preview Available ! NSV45030T1G Hoja de datos, Descripción, Manual

NSI45030T1G, NSV45030T1G
Constant Current Regulator
& LED Driver
45 V, 30 mA + 15%, 460 mW Package
The linear constant current regulator (CCR) is a simple, economical
and robust device designed to provide a cost−effective solution for
regulating current in LEDs (similar to Constant Current Diode, CCD).
The CCR is based on Self-Biased Transistor (SBT) technology and
regulates current over a wide voltage range. It is designed with a
negative temperature coefficient to protect LEDs from thermal
runaway at extreme voltages and currents.
The CCR turns on immediately and is at 25% of regulation with
only 0.5 V Vak. It requires no external components allowing it to be
designed as a high or low−side regulator. The high anode-cathode
voltage rating withstands surges common in Automotive, Industrial
and Commercial Signage applications. The CCR comes in thermally
robust packages and is qualified to AEC-Q101 standard, and
UL94−V0 certified.
Features
Robust Power Package: 460 mW
Wide Operating Voltage Range
Immediate Turn-On
Voltage Surge Suppressing − Protecting LEDs
SBT (Self−Biased Transistor) Technology
Negative Temperature Coefficient
NSV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q101
Qualified and PPAP Capable*
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS
Compliant
Applications
Automobile: Chevron Side Mirror Markers, Cluster, Display &
Instrument Backlighting, CHMSL, Map Light
AC Lighting Panels, Display Signage, Decorative Lighting, Channel
Lettering
Switch Contact Wetting
Application Note AND8391/D − Power Dissipation Considerations
Application Note AND8349/D − Automotive CHMSL
MAXIMUM RATINGS (TA = 25°C unless otherwise noted)
Rating
Symbol
Value
Unit
Anode−Cathode Voltage
Vak Max
45
V
Reverse Voltage
Operating and Storage Junction
Temperature Range
VR
TJ, Tstg
500
−55 to +150
mV
°C
ESD Rating: Human Body Model
Machine Model
ESD
Class 1C
Class B
Stresses exceeding those listed in the Maximum Ratings table may damage the
device. If any of these limits are exceeded, device functionality should not be
assumed, damage may occur and reliability may be affected.
© Semiconductor Components Industries, LLC, 2015
June, 2015 − Rev. 5
1
www.onsemi.com
Ireg(SS) = 30 mA
@ Vak = 7.5 V
Anode 2
Cathode 1
2
1
SOD−123
CASE 425
STYLE 1
MARKING DIAGRAM
AG M G
1 G2
AG = Device Code
M = Date Code
G = Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
Device
Package
Shipping
NSI45030T1G
SOD−123 3000/Tape & Reel
(Pb−Free)
NSV45030T1G* SOD−123 3000/Tape & Reel
(Pb−Free)
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
Publication Order Number:
NSI45030/D

1 page




NSV45030T1G pdf
NSI45030T1G, NSV45030T1G
Other Currents
The adjustable CCR can be placed in parallel with any
other CCR to obtain a desired current. The adjustable CCR
provides the ability to adjust the current as LED efficiency
increases to obtain the same light output (Figure 10).
LEDs on and off for a portion of a single cycle. This on/off
cycle is called the Duty cycle (D) and is expressed by the
amount of time the LEDs are on (Ton) divided by the total
time of an on/off cycle (Ts) (Figure 12).
Figure 10.
Dimming using PWM
The dimming of an LED string can be easily achieved by
placing a BJT in series with the CCR (Figure 11).
Figure 11.
The method of pulsing the current through the LEDs is
known as Pulse Width Modulation (PWM) and has become
the preferred method of changing the light level. LEDs being
a silicon device, turn on and off rapidly in response to the
current through them being turned on and off. The switching
time is in the order of 100 nanoseconds, this equates to a
maximum frequency of 10 Mhz, and applications will
typically operate from a 100 Hz to 100 kHz. Below 100 Hz
the human eye will detect a flicker from the light emitted
from the LEDs. Between 500 Hz and 20 kHz the circuit may
generate audible sound. Dimming is achieved by turning the
Figure 12.
The current through the LEDs is constant during the period
they are turned on resulting in the light being consistent with
no shift in chromaticity (color). The brightness is in proportion
to the percentage of time that the LEDs are turned on.
Figure 13 is a typical response of Luminance vs Duty Cycle.
6000
5000
4000
3000
2000
1000
Lux
Linear
0
0 10 20 30 40 50 60 70 80 90 100
DUTY CYCLE (%)
Figure 13. Luminous Emmitance vs. Duty Cycle
Reducing EMI
Designers creating circuits switching medium to high
currents need to be concerned about Electromagnetic
Interference (EMI). The LEDs and the CCR switch
extremely fast, less than 100 nanoseconds. To help eliminate
EMI, a capacitor can be added to the circuit across R2.
(Figure 11) This will cause the slope on the rising and falling
edge on the current through the circuit to be extended. The
slope of the CCR on/off current can be controlled by the
values of R1 and C1.
The selected delay / slope will impact the frequency that
is selected to operate the dimming circuit. The longer the
delay, the lower the frequency will be. The delay time should
not be less than a 10:1 ratio of the minimum on time. The
frequency is also impacted by the resolution and dimming
steps that are required. With a delay of 1.5 microseconds on
the rise and the fall edges, the minimum on time would be
30 microseconds. If the design called for a resolution of 100
dimming steps, then a total duty cycle time (Ts) of 3
milliseconds or a frequency of 333 Hz will be required.
www.onsemi.com
5

5 Page










PáginasTotal 7 Páginas
PDF Descargar[ Datasheet NSV45030T1G.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
NSV45030T1GConstant Current Regulator & LED DriverON Semiconductor
ON Semiconductor

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar